精英家教网 > 高中数学 > 题目详情

已知函数f (x)=2cos2x+数学公式sinxcosx.
(1)求函数f (x)定义在数学公式上的值域.
(2)在△ABC中,若f (C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.

解:(1)f(x)=1+cos2x+sin2x=2sin(2x+)+1


∴f(x)∈[0,3].
即f(x)的值域为[0,3]
(2)由f(C)=2得2sin(2C+)+1=2,∴sin(2C+)=
∵0<C<π∴
∴C=∴A+B=
又∵2sinB=cos(A-C)-cos(A+C)
∴2sinB=2sinAsinC




分析:(1)先对函数f(x)根据二倍角公式和两角和与差的公式进行化简,再由x的范围求得2x+的范围,最后根据正弦函数的性质可求得f(x)的值域.
(2)将C代入到函数f(x)中可求得C的值,进而可得到A+B的值,再结合2sinB=cos(A-C)-cos(A+C)运用两角和与差的公式即可得到tanA的值.
点评:本题主要考查二倍角公式、两角和与差的公式的应用,考查正弦函数的值域的求法.高考对三角函数的考查以基础题为主,一定要加强基础知识的夯实.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案