精英家教网 > 高中数学 > 题目详情
已知数列{log3(an-1)(n∈N*)}为等差数列,且a1=4,a2=10.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 求证:
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
1
4
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(I)利用等差数列的定义及其通项公式即可得出;
(II)利用(I)和等比数列的前n项和公式即可得出.
解答: (Ⅰ)解:设等差数列{log3(an-1)(n∈N*)}的公差为d,
由a1=4,a2=10得log3(4-1)=1,log3(10-1)=2,
∴d=2-1=1;
∴log3(an-1)=1+(n-1)×1=n,
an-1=3n
an=3n+1
(Ⅱ)证明:∵
1
an+1-an
=
1
3n+1-3n
=
1
2
1
3n

1
a2-a1
+
1
a3-a2
+…+
1
an+1-an

=
1
2
(
1
31
+
1
32
+
1
33
…+
1
3n
)

=
1
2
(
1
3
-
1
3n
×
1
3
1-
1
3
)=
1
2
1
2
(1-
1
3n
)<
1
4
点评:本题考查了等差数列的定义及其通项公式、等比数列的前n项和公式等基础知识与基本技能方法,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线
3
x+y+m=0与圆x2+y2=9交于A,B两点,则与向量
OA
+
OB
(O为坐标原点)共线的一个向量为(  )
A、(1,-
3
3
B、(1,
3
3
C、(1,
3
D、(1,-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

从旅游景点A到B有一条100公里的水路,某轮船公司开设一个观光项目,已知游轮每小时使用的燃料费用与速度的立方成正比例,其他费用为每小时3240元,游轮最大时速为50km/h,当游轮速度为10km/h,燃料费用为每小时60元,若单程票价定为150元/人.
(1)一艘游轮单程以40km/h航行,所载游客为180人,轮船公司获得的利润是多少?
(2)如果轮船公司要获取最大利润,游轮的速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
1
2
的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.试就方程组
ax+by=3
x+2y=2
解答下列问题:
(Ⅰ)求方程组没有解的概率;
(Ⅱ)求以方程组的解为坐标的点在第四象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一种新型的洗衣液,特点是去污速度快.已知每投放a(1≤a≤4,且a∈R)个单位的洗衣液,它在水中释放的浓度y与时间x(小时)的关系可近似地表示为:y=a•f(x),其中f(x)=
2-
x
6
-
6
x+3
    0≤x<3
1-
x
6
              3≤x≤6
;若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,只有当水中洗衣液的浓度不低于
1
3
时,才能起到有效去污的作用.
(Ⅰ) 如果只投放1个单位的洗衣液,则能够维持有效去污作用的时间有多长?
(Ⅱ) 第一次投放1个单位的洗衣液后,当水中洗衣液的浓度减少到
1
3
时,马上再投放1个单位的洗衣液,设第二次投放后水中洗衣液的浓度为g(x),求g(x)的函数解析式及其最大值;
(Ⅲ)若第一次投放2个单位的洗衣液,4小时后再投放a个单位的洗衣液,要使接下来的2小时中能够持续有效去污,试求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)满足f(x+2)•f(x)=-1,f(x)关于点(1,0)中心对称,关于直线x=a轴对称,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:对?x≥0,都有x3-1≥0,则¬p是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
π
0
(sinx+cosx)dx,则二项式(a
x
-
1
x
)6
的展开式的常数项是
 

查看答案和解析>>

同步练习册答案