精英家教网 > 高中数学 > 题目详情

【题目】如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使点A到A′的位置.若平面A′MN与平面MNCB垂直,则四棱锥A′MNCB的体积为________

【答案】3

【解析】∵ 平面A′MN与平面MNCB垂直,根据面面垂直的性质定理,可知A′E就是四棱锥A′MNCB的高,A′E=.又四棱锥的底面面积是×=3

∴ V=×3×=3.

点睛:处理翻折问题关注那些量变了,那些量没有变,特别是那些没有变,在本题中,AEMN始终保持垂直,利用面面垂直性质,可知A′E就是四棱锥A′MNCB的高,从而易得四棱锥的体积.处理多面体体积问题往往转化为三棱锥体积,而三棱锥哪个面都可以作为底面,处理体积非常灵活.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为Sn,点在直线上,数列为等差数列,且,前9项和为153.

(1)求数列的通项公式;

(2)设,数列的前n项和为,求使不等式对一切的都成立的最大整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为零的等差数列{an}中,a3=7,且a2a4a9成等比数列.

(1)求数列{an}的通项公式;

(2)设bn ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,为自然对数的底数.

1)当时,求的最大值;

2)若在区间上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中国某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机万部并全部销量完,每万部的销售收入为万元,且

1)写出年利润万元关于年产量(万部)的函数解析式;

2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.

(Ⅰ)当直线过点P且与圆心C的距离为1时,求直线的方程;

(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x) (m0n0)

(1) mn1求证:f(x)不是奇函数;

(2) f(x)是奇函数mn的值;

(3) (2)的条件下求不等式f(f(x))f <0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40 m的半圆形绿化区域以O 为圆心,AB为直径,现计划对其进行改建.在AB的延长线上取点D,OD=80 m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设∠AOCx rad.

1写出S关于x的函数关系式Sx,并指出x的取值范围;

2试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

查看答案和解析>>

同步练习册答案