精英家教网 > 高中数学 > 题目详情
在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 
分析:先求出向量
BC
AN
,然后根据
MN
=
AN
-
AM
进行求解即可求出所求.
解答:解:
BC
=
AC
-
AB
=
b
-
a

AN
=
AB
+
1
3
BC
=
a
+
1
3
(
b
-
a
)

MN
=
AN
-
AM
 =
1
3
b
 +
2
3
a
-
1
2
a
=
a
6
+
b
3

故答案为:
MN
=
a
6
+
b
3
点评:本题主要考查了平面向量的基本定理及其意义,同时考查向量的运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

同步练习册答案