(08年浙江卷)(本题14分)如图,矩形和梯形所在平面互相垂直,,,,.
(Ⅰ)求证:平面;
(Ⅱ)当的长为何值时,二面角的大小为?
【解析】 本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力。满分14分。
方法一:
(Ⅰ)证明:过点作交于,连结,
可得四边形为矩形,又为矩形,
所以,从而四边形为平行四边形,
故.
因为平面,平面,
所以平面.
(Ⅱ)解:过点作交的延长线于,连结.
由平面平面,,得平面,
从而.
所以为二面角的平面角.
在中,因为,,所以,.
又因为,所以,
从而.
于是.
因为,
所以当为时,二面角的大小为.
方法二:如图,
以点为坐标原点,以和分别作为轴,轴和轴,
建立空间直角坐标系.设,
则,,,,.
(Ⅰ)证明:,,,
所以,,从而,,
所以平面.
因为平面,所以平面平面.
故平面.
(Ⅱ)解:因为,,
所以,,从而
解得.
所以,.
设与平面垂直,则,,
解得.
又因为平面,,
所以,得到.
所以当为时,二面角的大小为.
科目:高中数学 来源: 题型:
(08年浙江卷文)(本题14分)一个袋中装有大小相同的黑球、白球和红球。已知袋中共有10个球.从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.求:
(Ⅰ)从中任意摸出2个球,得到的都是黑球的概率;
(Ⅱ)袋中白球的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年浙江卷理)(本题14分)一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于.并指出袋中哪种颜色的球个数最少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com