精英家教网 > 高中数学 > 题目详情

在△ABC中,(cosA+sinA)(cosB+sinB)=2,则△ABC是


  1. A.
    等边三角形
  2. B.
    等腰三角形
  3. C.
    直角三角形
  4. D.
    等腰三角形
D
分析:对条件,“,(cosA+sinA)(cosB+sinB)=2,”展开后利用三角函数的和角公式进行化简,结合三角函数的有界性,得到A-B=0且A+B=90°对选项进行判断.
解答:∵(cosA+sinA)(cosB+sinB)=2,
∴cosAcosB+sinAsinB+cosAsinB+sinAcosB=2,
即cos(A-B)+sin(A+B)=2,
∵cos(A-B)≤1,sin(A+B)≤1,
∴cos(A-B)+sin(A+B)=2,?cos(A-B)=1且sin(A+B)=1,
?A-B=0且A+B=90°.
则△ABC是等腰直角三角形.
故选D.
点评:本小题主要考查三角形的形状判断、三角函数的和角或差角公式、三角函数的性质等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC中,已知,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC中,已知,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中数学 来源:2013年吉林省实验中学高考数学二模试卷(文科)(解析版) 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足,则的最小值是   

查看答案和解析>>

同步练习册答案