精英家教网 > 高中数学 > 题目详情
若函数为定义域上的单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数上的正函数.若函数上的正函数,则实数的取值范围为(     )
A.B.C.D.
A

试题分析:根据二次函数的图像与性质可知函数单调递减,所以当时,,两式相减得,因为,所以,代入,由可得,所以关于的二次方程在区间内有实数解,在区间内有实数解又可转化为关于的函数在区间的值域,因为函数单调递减,所以,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为 “()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对
(3)已知函数是“型函数”,对应的实数对,当时,,若当时,都有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,记函数g(x)的最大值与最小值的差为h(a).
(1)求函数h(a)的解析式;
(2)画出函数y=h(x)的图象并指出h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的最小值是,且的值:
(2)若,且在区间恒成立,试求取范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示是《函数的应用》的知识结构图,如果要加入“用二分法求方程的近似解”,则应该放在(   )
A.“函数与方程”的上位B.“函数与方程”的下位
C.“函数模型及其应用”的上位D.“函数模型及其应用”的下位

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积为定值1010,为了简单起见,科学家用PA=lg(nA)来记录A菌个数的资料,其中nA为A菌的个数,则下列判断中正确的个数为(  )
①PA≥1;
②若今天的PA值比昨天的PA值增加1,则今天的A菌个数比昨天的A菌个数多了10个;
③假设科学家将B菌的个数控制为5万个,则此时5<PA<5.5.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某厂去年的产值为1,若计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年这五年内,这个厂的总产值约为________.(保留一位小数,取1.15≈1.6)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

同步练习册答案