精英家教网 > 高中数学 > 题目详情
设函数f(x)=
eX
x2+ax+a
,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单减区间.
(Ⅰ)f(x)的定义域为R,
∴x2+ax+a≠0恒成立,∴△=a2-4a<0,∴0<a<4,
即当0<a<4时f(x)的定义域为R.

(Ⅱ)由题意可知:f′(x)=
x(x+a-2)ex
(x2+ax+a)2
,令f'(x)≤0,得x(x+a-2)≤0.
由f'(x)=0,得x=0或x=2-a,
又∵0<a<4,∴0<a<2时,由f'(x)<0得0<x<2-a;
当a=2时,f'(x)≥0;当2<a<4时,由f'(x)<0得2-a<x<0,
即当0<a<2时,f(x)的单调减区间为(0,2-a);
当2<a<4时,f(x)的单调减区间为(2-a,0).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、设函数f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲线y=f(x)在点P(0,f(0))处的切线与直线y=x+4平行.求a的值;
(II)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+aex(x∈R)是奇函数,则实数a=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex
(I)求证:f(x)≥ex;
(II)记曲线y=f(x)在点P(t,f(t))(其中t<0)处的切线为l,若l与x轴、y轴所围成的三角形面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(e为自然对数的底数),g(x)=x2-x,记h(x)=f(x)+g(x).
(1)h′(x)为h(x)的导函数,判断函数y=h′(x)的单调性,并加以证明;
(2)若函数y=|h(x)-a|-1=0有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案