精英家教网 > 高中数学 > 题目详情
设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=(  )  当n>4时,f(n)=(  )
分析:首先由图可得f(4)的值,进而逐一给出f(3),f(4),…,的值,分析可得从n-1条直线增加为n条直线时,交点的数目会增加n-1,即f(n)=f(n-1)+n-1,然后利用数列求和的办法计算可得答案.
解答:解:如图,4条直线有5个交点,故f(4)=5,
由f(3)=2,
f(4)=f(3)+3

分析可得,从n-1条直线增加为n条直线时,交点的数目会增加n-1,
f(n)=f(n-1)+n-1,
累加可得f(n)=2+3+…+(n-2)+(n-1)
=
(n-2)(n-1+2)
2

=
(n-2)(n+1)
2

故选D.
点评:本题考查归纳推理的运用,注意运用数列的性质来发现其中的规律,并进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点个数,则f(4)=
 
,当n>4时f(n)=
 
(用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,f(n)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设平面内有n条直线(n≥3)其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点的个数,则f(4)=
5
5
,当n>4时,f(n)=
(n-2)(n+1)
2
(n-2)(n+1)
2
(用n表示).
(2)如图:若射线OM,ON上分别存在点M1,M2与点N1,N2,则三角形面积之比
S△OM1N1
S△OM2 N2
=
OM1
OM2
=
ON1
ON2
,若不在同一平面内的射线OP,OQ和OR上分别存在点P1P2,点Q1Q2和点R1R2,则
VO-P1Q1R1
VO-P2Q2R2 
=
OP1•OQ1•OR1
OP2•OQ2•OR2
OP1•OQ1•OR1
OP2•OQ2•OR2

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面内有n条直线(n≥3,n∈N*),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=
5
5
;当n≥3时,f(n)=
(n-2)(n+1)
2
(n-2)(n+1)
2
.(用含n的数学表达式表示)

查看答案和解析>>

同步练习册答案