精英家教网 > 高中数学 > 题目详情
已知函数①f(x)=2lnx;②f(x)=3ecosx;③f(x)=3ex;其中对于f(x)定义域内的任意一个自变量都存在唯一个个自变量x2,使
f(x1)f(x2)
=3
成立的函数是
 
.(填上所有正确结论的序号)
分析:先根据条件把:
f(x1)f(x2)
=3
转化为:f(x1)f(x2)f(x1)=9=9;对于①②,举反例即可排除,对于③,按要求推导其成立即可.
解答:解:因为
f(x1)f(x2)
=3
,即f(x1)f(x2)f(x1)=9=9.
对于①,当x1=1时,f(x1)=0,对于任意一个x2,都有f(x1)f(x2)f(x1)=9=0,不成立.
对于②,因为f(x1)f(x2)f(x1)=9=9ecosx1+cosx2  =9,即cosx1+cosx2=1,当x1=π时,x2=(2k+1)π,k∈Z,有无数个,不成立
对于③,因为f(x1)f(x2)f(x1)=9=9ex1+x2 =9,即x1+x2=0,对于f(x)定义域内的任意一个自变量都存在唯一个个自变量x2,符合要求.
故选:③.
点评:本题主要考查函数恒成立问题.在我们想排除一个答案时,只要能找到一个反例即可说明问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案