精英家教网 > 高中数学 > 题目详情

.

 (1) 求的长    

(2) 若点的中点,求中线的长度.


解:①由

由正弦定理知

  ②  

由余弦定理知:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


在直角坐标系内,点实施变换后,对应点为,给出以下命题:

①圆上任意一点实施变换后,对应点的轨迹仍是圆

②若直线上每一点实施变换后,对应点的轨迹方程仍是

③椭圆上每一点实施变换后,对应点的轨迹仍是离心率不变的椭圆;

④曲线上每一点实施变换后,对应点的轨迹是曲线是曲线上的任意一点,是曲线上的任意一点,则的最小值为

以上正确命题的序号是___ ___(写出全部正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:


已知,若的夹角为钝角,则实数的取值范围是        

查看答案和解析>>

科目:高中数学 来源: 题型:


 函数的单调递减区间为   (      )

(A)           ( B)

( C )          (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


,且,则角的取值范围是           .

查看答案和解析>>

科目:高中数学 来源: 题型:


位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动五次后位于点(2,3)的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:


小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.

(1)求小王过第一关但未过第二关的概率;

(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:


曲线C1的参数方程为 (θ为参数),曲线C2的极坐标方程为ρ=2cos θ-2sin θ.

(1)化曲线C1C2的方程为普通方程,并说明它们分别表示什么曲线;

(2)设曲线C1x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


           .

查看答案和解析>>

同步练习册答案