精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC与平面ABCD所成角为45°
(1)若E为PC的中点,求证:PD⊥平面ABE;
(2)若CD= ,求点B到平面PCD的距离.

【答案】
(1)证明:∵PA⊥平面ABCD,CD平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE平面PAC,∴CD⊥AE.

∵PC与平面ABCD所成角为45°

∴AC=PA,

∵E是PC的中点,∴AE⊥PC,又PC∩CD=C,∴AE⊥平面PCD,

而PD平面PCD,∴AE⊥PD.

∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD,又AB⊥AD,

由面面垂直的性质定理可得BA⊥平面PAD,AB⊥PD,

又AB∩AE=A,∴PD⊥平面ABE.


(2)解:CD= ,可得AC=3,

∵PA⊥平面ABCD,∴PA⊥AC,∴PC=3

由(1)的证明知,CD⊥平面PAC,∴CD⊥PC,

∵AB⊥AD,△ABC为正三角形,∴∠CAD=30°,

∵AC⊥CD,∴CD=ACtan30°=

设点B的平面PCD的距离为d,则VB﹣PCD= × ×3 × ×d= d.

在△BCD中,∠BCD=150°,∴S△BCD= ×3× sin150°=

∴VP﹣BCD= × ×3=

∵VB﹣PCD=VP﹣BCD,∴ d= ,解得d=

即点B到平面PCD的距离为


【解析】(1)利用线面垂直的判定与性质定理可得CD⊥平面PAC,CD⊥AE.利用等腰三角形的性质与线面垂直的判定定理可得:AE⊥平面PCD,可得AE⊥PD.利用面面垂直的性质定理与线面垂直的判定定理可得AB⊥PD,进而证明结论.(2)设点B的平面PCD的距离为d,利用VB﹣PCD=VP﹣BCD即可得出.
【考点精析】掌握直线与平面垂直的判定是解答本题的根本,需要知道一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位要在800名员工中抽去80名员工调查职工身体健康状况,其中青年员工400名,中年员工300名,老年员工100名,下列说法错误的是(
A.老年人应作为重点调查对象,故抽取的老年人应超过40名
B.每个人被抽到的概率相同为
C.应使用分层抽样抽取样本调查
D.抽出的样本能在一定程度上反映总体的健康状况

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,D,E分别是BC,A1B1的中点.
(1)求证:DE∥平面ACC1A1
(2)设M为AB上一点,且AM= AB,若直三棱柱ABC﹣A1B1C1的所有棱长均相等,求直线DE与直线A1M所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调性;

(2)当时,证明:对任意的,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(2x﹣2)2+(2﹣x+2)2﹣10在区间[1,2]上的最大值与最小值之积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面内有三个向量 ,其中 的夹角为30°, 的夹角为90°,且| |=2,| |=2,| |=2 ,若 ,(λ,μ∈R)则(
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=
(1)求集合A,B;
(2)设集合 ,求函数f(x)=x﹣ 在A∩C上的值域.

查看答案和解析>>

同步练习册答案