精英家教网 > 高中数学 > 题目详情

已知椭圆C过点A(1,),两个焦点为(-1,0)(1,0)。

求椭圆C的方程;

E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

 

【答案】

(Ⅰ)由题意,c=1,可设椭圆方程为 。     

因为A在椭圆上,所以,解得=3,(舍去)。

所以椭圆方程为  .                    ......5分

(Ⅱ)设直线AE方程:得,代入得m         

设E(),F().因为点A(1,)在椭圆上,所以

,    

。                       .......9分

又直线AF的斜率与AE的斜率互为相反数,在上式中以,可得

,     

所以直线EF的斜率

即直线EF的斜率为定值,其值为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C过点P(1,
32
),两个焦点分别为F1(-1,0),F2(1,0).
(1)求椭圆C的方程;
(2)过点F1的直线交椭圆于A、B两点,求线段AB的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C过点M(1,
32
),两个焦点为A(-1,0),B(1,0),O为坐标原点.
(1)求椭圆C的方程;
(2)直线l过点A(-1,0),且与椭圆C交于P,Q两点,求△BPQ的内切圆面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C过点A(1,
32
)
,两个焦点坐标分别是F1(-1,0),F2(1,0).
(1)求椭圆C的方程.
(2)过左焦点F1作斜率为1的直线l与椭圆相交于M、N两点,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元一模)已知椭圆C过点A(1,
3
2
)
,两个焦点为F1(-1,0)、F2(1,0).
①求椭圆C的方程;
②过点A的直线l交椭圆C于另一点B,若点M的横坐标为-
1
2
_,且满足
OA
+
OB
=
2OM
,求直线l的方程.

查看答案和解析>>

同步练习册答案