精英家教网 > 高中数学 > 题目详情

直三棱柱ABC-A1B1C1的底面是边长为3的正三角形,且侧棱长为2,则这个三棱柱的外接球的体积为


  1. A.
    数学公式
  2. B.
  3. C.
    数学公式
  4. D.
    16π
C
分析:先根据题意画出图形,再设三棱柱外接球的球半径为r,利用在直角三角形ADO中的边的关系求出球半径,最后利用球的体积公式即可求出这个三棱柱的外接球的体积.
解答:解:设三棱柱外接球的球心为O,球半径为r,
三棱柱的底面三角形ABC的中心为D,如图,
有:OA=r,由于三棱柱的高为2,∴OD=1,
又在正三角形ABC中,AB=3,则AD=
∴在直角三角形ADO中,OA2=OD2+AD2有r2=12+(2
∴r=2,
则这个三棱柱的外接球的体积为V=×r3=
故选C.
点评:本题是基础题,考查几何体的外接球的体积的应用,三棱柱的性质等,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求证:平面AB1C⊥平面B1CB;    
(2)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距离;   
(3)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆八中高三(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案