精英家教网 > 高中数学 > 题目详情
17.在数列{an}中,a1=2,2an+1-2an=1,则S12=57.

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:∵a1=2,2an+1-2an=1,
∴an+1-an=$\frac{1}{2}$,
∴数列{an}是等差数列,首项为2,公差为$\frac{1}{2}$.
其前n项和S12=12×2+$\frac{12×11}{2}$×$\frac{1}{2}$=57.
故答案是:57.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列四个关于圆锥曲线的命题,正确的是(  )
①从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
②已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
③关于x的方程x2-mx+1=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线$\frac{{x}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1有共同的焦点.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(1,$\sqrt{3}$),若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线l,l与离心率为e的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的两条渐近线的交点分别为B,C.若xB,xC,xF分别表示B,C,F的横坐标,且$x_F^2=-{x_B}•{x_C}$,则e=(  )
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C以F1(-1,0),F2(1,0)为焦点,且离心率$e=\frac{{\sqrt{2}}}{2}$
(1)求椭圆C的方程;
(2)设椭圆C与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在过点$M(0\;,\;\sqrt{2})$的直线l1,满足:直线l1与椭圆C有两个不同交点P、Q,且使得向量$\overrightarrow{OP}+\overrightarrow{OQ}$与$\overrightarrow{AB}$垂直.如果存在,写出l1的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩∁UB=(  )
A.{3,6}B.{5}C.{2,4}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{2-{2}^{x}}$+lnx的定义域为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分别是AA1和BB1的中点,G是DB上的点,且DG=2GB.
(I)作出长方体ABCD-A1B1C1D1被平面EB1C所截的截面(只需作出,说明结果即可);
(II)求证:GF∥平面EB1C;
(III)设长方体ABCD-A1B1C1D1被平面EB1C所截得的两部分几何体体积分别为V1、V2(V1>V2),求$\frac{{V}_{2}}{{V}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=x2+ln|x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案