17£®Ä³ÕÛµþ²Í×ÀµÄʹÓò½ÖèÈçͼËùʾ£¬ÓÐÈçͼ¼ì²éÏîÄ¿£º

ÏîÄ¿¢Ù£ºÕÛµþ״̬Ï£¨Èçͼ1£©£¬¼ì²éËÄÌõ×ÀÍȳ¤ÏàµÈ£»
ÏîÄ¿¢Ú£º´ò¿ª¹ý³ÌÖУ¨Èçͼ2£©£¬¼ì²éOM=ON=O'M'=O'N'£»
ÏîÄ¿¢Û£º´ò¿ª¹ý³ÌÖУ¨Èçͼ2£©£¬¼ì²éOK=OL=O'K'=O'L'£»
ÏîÄ¿¢Ü£º´ò¿ªºó£¨Èçͼ3£©£¬¼ì²é¡Ï1=¡Ï2=¡Ï3=¡Ï4=90¡ã£»
ÏîÄ¿¢Ý£º´ò¿ªºó£¨Èçͼ3£©£¬¼ì²éAB=A'B'=C'D'=CD£®
ÔÚ¼ì²éÏîÄ¿µÄ×éºÏÖУ¬¿ÉÒÔÕýÈ·Åжϡ°×À×Ó´ò¿ªÖ®ºó×ÀÃæÓëµØÃæÆ½ÐеÄÊÇ¡±£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ú¢Û¢ÜC£®¢Ú¢Ü¢ÝD£®¢Û¢Ü¢Ý

·ÖÎö ¸ù¾ÝÃæÃæÆ½ÐеÄÅж¨£¬¿¼²éÊÇ·ñ¿ÉÒԵõ½ÏßÏ߯½ÐУ¬×ª»¯ÎªÏßÃæÆ½ÐУ¬µÃµ½ÃæÃæÆ½ÐУ®

½â´ð ½â£ºÏîÄ¿¢Ù£ºÕÛµþ״̬Ï£¨Èçͼ1£©£¬ËÄÌõ×ÀÍȳ¤ÏàµÈʱ£¬×ÀÃæÓëµØÃæ²»Ò»¶¨Æ½ÐУ»
ÏîÄ¿¢Ú£º´ò¿ª¹ý³ÌÖУ¨Èçͼ2£©£¬ÈôOM=ON=O'M'=O'N'£¬¿ÉÒԵõ½ÏßÏ߯½ÐУ¬´Ó¶øµÃµ½ÃæÃæÆ½ÐУ»
ÏîÄ¿¢Û£º´ò¿ª¹ý³ÌÖУ¨Èçͼ2£©£¬¼ì²éOK=OL=O'K'=O'L'£¬¿ÉÒԵõ½ÏßÏ߯½ÐУ¬´Ó¶øµÃµ½ÃæÃæÆ½ÐУ»
ÏîÄ¿¢Ü£º´ò¿ªºó£¨Èçͼ3£©£¬¼ì²é¡Ï1=¡Ï2=¡Ï3=¡Ï4=90¡ã£¬¿ÉÒԵõ½ÏßÏ߯½ÐУ¬´Ó¶øµÃµ½ÃæÃæÆ½ÐÐ
ÏîÄ¿¢Ý£º´ò¿ªºó£¨Èçͼ3£©£¬¼ì²éAB=A'B'=C'D'=CD£®×ÀÃæÓëµØÃæ²»Ò»¶¨Æ½ÐУ»
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÁËÏßÏ߯½ÐÐ⇒ÏßÃæÆ½ÐÐ⇒ÃæÃæÆ½ÐеÄת»¯¹ØÏµ£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³³ÇÊÐ100»§¾ÓÃñµÄÔÂÆ½¾ùÓõçÁ¿£¨µ¥Î»£º¶È£©£¬ÒÔ[160£¬180£©£¬[180£¬200£©£¬[200£¬220£©£¬[220£¬240£©£¬[240£¬260£©£¬[260£¬280£©£¬[280£¬300]·Ö×éµÄƵÂÊ·Ö²¼Ö±·½Í¼Èçͼʾ£®
£¨1£©ÇóÖ±·½Í¼ÖÐxµÄÖµ£»
£¨2£©ÇóÔÂÆ½¾ùÓõçÁ¿µÄÖÚÊýºÍÖÐλÊý£»
£¨3£©ÔÚÔÂÆ½¾ùÓõçÁ¿Îª[220£¬240£©£¬[240£¬260£©£¬[260£¬280£©£¬[280£¬300]µÄËÄ×éÓû§ÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡11»§¾ÓÃñ£¬ÔòÔÂÆ½¾ùÓõçÁ¿ÔÚ[220£¬240£©µÄÓû§ÖÐÓ¦³éÈ¡¶àÉÙ»§£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª¼¯ºÏA={-2£¬-1£¬0£¬1£¬2}£¬∁RB={x|$\frac{x-1}{x+2}$¡Ý0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{-1£¬0£¬1}B£®{-1£¬0}C£®{-2£¬-1£¬0}D£®{0£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªa=-2${\;}^{1-lo{g}_{2}3}$£¬b=1-log23£¬c=cos$\frac{5¦Ð}{6}$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¼b£¼cB£®b£¼a£¼cC£®c£¼a£¼bD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=£¨ax2+x-1£©ex£®
£¨1£©Èôa£¼0ʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôg£¨x£©=e-xf£¨x£©+lnx£¬¹ýO£¨0£¬0£©×÷y=g£¨x£©ÇÐÏßl£¬ÒÑÖªÇÐÏßlµÄбÂÊΪ-e£¬ÇóÖ¤£º-$\frac{2{e}^{2}+e}{2}$£¼a£¼-$\frac{e+2}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}1-{x^2}£¬x¡Ý0\\ cos¦Ðx£¬x£¼0.\end{array}$Èô¹ØÓÚxµÄ·½³Ìf£¨x+a£©=0ÔÚ£¨0£¬+¡Þ£©ÄÚÓÐΨһʵ¸ù£¬ÔòʵÊýaµÄ×îСֵÊÇ-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈôµãA£¨1£¬1£©ÔÚÖ±Ïßmx+ny-3mn=0ÉÏ£¬ÆäÖУ¬mn£¾0£¬Ôòm+nµÄ×îСֵΪ$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Å×ÎïÏßE£ºx2=2py£¨p£¾0£©µÄ½¹µãΪ£¨0£¬1£©£¬Ô²ÐÄMÔÚÉäÏßy=2x£¨x¡Ý0£©ÉÏÇҰ뾶Ϊ2µÄÔ²MÓëyÖáÏàÇУ®
£¨¢ñ£©ÇóÅ×ÎïÏßE¼°Ô²MµÄ·½³Ì£»
£¨¢ò£©¹ýP£¨2£¬0£©×÷Á½ÌõÏ໥´¹Ö±µÄÖ±Ïߣ¬ÓëÅ×ÎïÏßEÏཻÓÚA£¬BÁ½µã£¬ÓëÔ²MÏཻÓÚC£¬DÁ½µã£¬NΪÏß¶ÎCDµÄÖе㣬µ±${S_{¡÷NAB}}=4\sqrt{5}$£¬ÇóABËùÔÚµÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êý$f£¨x£©=sin¦Øx£¨cos¦Øx-\sqrt{3}sin¦Øx£©+\frac{{\sqrt{3}}}{2}£¨¦Ø£¾0£©$µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£®
£¨¢ñ£©Ç󦨵ÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸