精英家教网 > 高中数学 > 题目详情

(文)坐标平面上一点P到点A(,0),B(a,2)及到直线x=的距离都相等.如果这样的点P恰好只有一个,那么实数a的值是

[  ]

A.

B.

C.

D.或-

答案:D
解析:

平面上到点A(,0)及到直线x=-的距离相等的点的轨迹是抛物线y2=4x.本题实质上就是该抛物线上有且只有一个点到点A(,0),B(a,2)的距离相等,有两种情况:一是线段AB的垂直平分线与抛物线相切,一是线段AB的垂直平分线与抛物线的对称轴平行.可得结果实数a的值为或-


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)当
e
1
e
2
都为单位向量时,求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共线,求向量
e
1
e
2
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图a所示,在平面直角坐标系中,O为坐标原点,M为动点,且,= .过点M作MM1⊥y轴于M1,过N作NN1⊥x轴于点N1.又动点T满足=+ ,其轨迹为曲线C.

(1)求曲线C的方程;

(2)已知点A(5,0)、B(1,0),过点A作直线交曲线C于两个不同的点P、Q,△BPQ的面积S是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

(文)如图b所示,线段AB过x轴正半轴上一点M(m,0)(m>0),端点A,B到x轴距离之积为2m,以x轴为对称轴、过A,O,B三点作抛物线.

(1)求抛物线方程;

(2)若tan∠AOB=-1,求m的取值范围.

第21题图

查看答案和解析>>

科目:高中数学 来源:2011年上海市普陀区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为,其中,且向量
(1)当都为单位向量时,求
(2)若向量和向量共线,求向量的夹角.

查看答案和解析>>

同步练习册答案