精英家教网 > 高中数学 > 题目详情

方程x2-2x+5=0的复数根为________.

1±2i
分析:可设x=a+bi(a,b∈R),利用两复数相等得到关于a,b的方程组,解之即可.
解答:∵x2-2x+5=0,△=4-20=-16<0,
∴方程无实根,
设x=a+bi(a,b∈R),
则a2-b2+2abi-2a-2bi+5=0,

∴a=1,b=±2.
∴x=1±2i.
故答案为:1±2i.
点评:本题考查复数的基本概念,考查复数相等,考查解方程组的能力,也可以直接通过求根公式得到答案,属于基础题,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程|x2+2x-5|=2a有四个不相等的实根,则实数a的取值范围是
(0,3)
(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z是方程x2+2x+5=0的解,且Imz<0,若
a
z
+
.
z
=b+i
(其中a、b为实数,i为虚数单位,Imz表示z的虚部),求复数w=a+bi的模.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)设x∈C,则方程x2-2x+5=0的根为
x=1±2i
x=1±2i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)方程x2-2x+5=0的复数根为
1±2i
1±2i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.

查看答案和解析>>

同步练习册答案