精英家教网 > 高中数学 > 题目详情
(2013•嘉定区一模)设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.
分析:解实系数一元二次方程求得z,得到 
a2-4sin2θ = 1
1+2cosθ = 2
,解方程组求得 θ 和a的值.
解答:解:方程 x2-2x+5=0 的根为 x=1±2i,因为z在复平面内所对应的点在第一象限,所以 z=1+2i,
所以,
a2-4sin2θ = 1
1+2cosθ = 2
,解得 cosθ=
1
2
,因为 θ∈(0,π),所以,θ=
π
3

所以,a2=1+4sin2θ=1+4×
3
4
=4,a=±2.
综上,θ=
π
3
,a=±2.
点评:本题考查实系数一元二次方程的解法,复数与复平面内对应点之间的关系,根据三角函数值求角,得到
a2-4sin2θ = 1
1+2cosθ = 2
,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区一模)书架上有3本不同的数学书,2本不同的语文书,2本不同的英语书,将它们任意地排成一排,则左边3本都是数学书的概率为
1
35
1
35
(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)若双曲线x2-
y2
k
=1
的焦点到渐近线的距离为2
2
,则实数k的值是
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图所示的算法框图,若输出S的值是90,那么在判断框(1)处应填写的条件是
k≤8
k≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)被围于由4条直线x=±a,y=±b所围成的矩形ABCD内,任取椭圆上一点P,若
OP
=m•
OA
+n•
OB
(m、n∈R),则m、n满足的一个等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.数列{bn}的前n项和为Tn,满足Tn=1-bn
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得
1
am+9
是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=
an
an+t
,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案