精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=$\frac{1}{3}$,2anan-1=an-an-1,则数列an的通项公式为an=$\frac{1}{5-2n}$.

分析 2anan-1=an-an-1,可得$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=-2.利用等差数列的通项公式即可得出.

解答 解:∵2anan-1=an-an-1,∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=-2.
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为3,公差为2.
∴$\frac{1}{{a}_{n}}$=3-2(n-1)=5-2n.
∴an=$\frac{1}{5-2n}$.
故答案为:an=$\frac{1}{5-2n}$.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数t=tan(3x+$\frac{π}{3}$)的图象的对称中心不可能是(  )
A.(-$\frac{π}{9}$,0)B.($\frac{π}{18}$,0)C.$(-\frac{π}{18},0)$D.$(-\frac{5π}{18},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“λ<1”是“数列{n2-2λn}(n∈N*)为递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}(1-2a)x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域为R,那么a的取值范围是(  )
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.(-∞,-1]D.$({-∞,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为0.3,方差为0.2645.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+x-2(a∈R),g(x)=-x+1+4lnx,h(x)=f(x)-g(x).
(1)当a=1时,证明函数h(x)只有一个零点;
(2)若函数h(x)在定义域内没有极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若一个球的表面积为36π,则它的体积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若能把单位圆O:x2+y2=1的周长和面积同时分为相等的两部分的函数称为圆O的“完美函数”,下列函数不是圆O的“完美函数”的是(  )
A.f(x)=4x3+xB.$f(x)=ln\frac{5-x}{5+x}$C.$f(x)=tan\frac{x}{2}$D.f(x)=ex+e-x

查看答案和解析>>

同步练习册答案