精英家教网 > 高中数学 > 题目详情
已知离心率为的椭圆C1(a>b>0)的左右焦点分别为F1、F2,圆C2:x2+y2=b2与直线l:相切.
(1)求椭圆的标准方程;
(2)如果直线l绕着它与x轴的交点旋转,且与椭圆相交于P1、P2两点,设直线P1F1与P2F1的斜率分别为k1和k2,求证:k1+k2=0.
【答案】分析:(1)由圆心到直线的距离等于半径,知.由 ,知a2=2b2=8,由此能求出椭圆方程.
(2)设直线为y=k(x+4),它与椭圆相交于P1、P2两点,设P1(x1,y1),P2(x2,y2),F1(-2,0),,k1+k2=.联立与y=k(x+4)得(2k2+1)x2+16k2x+32k2-8=0,由韦达定理能够证明k1+k2=0.
解答:解:(1)∵圆心到直线的距离等于半径,


,a2=2b2=8,
所以椭圆方程为 
(2)当直线l绕着它与x轴的交点旋转,可设直线为y=k(x+4),
它与椭圆相交于P1、P2两点,
设P1(x1,y1),P2(x2,y2),F1(-2,0),


k1+k2=+
=
=…(1)
联立与y=k(x+4)得
(2k2+1)x2+16k2x+32k2-8=0,

代入(1)式则有
k1+k2=
点评:本题主要考查椭圆标准方程,简单几何性质,具体涉及到轨迹方程的求法及直线与椭圆的位置关系.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.解题时要认真审题,注意韦达定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)已知离心率为的椭圆C的左顶点为A,上顶点为B,且点B在圆M上.

(1)求椭圆C的方程;

(2)若过点A的直线l与圆M交于PQ两点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省怀化三中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知离心率为的椭圆C:过(1,
(1)求椭圆C的方程;
(2)是否存在实数m,使得在此椭圆C上存在不同两点关于直线y=4x+m对称,若存在请求出m,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省赣州市南康中学高二(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C:+=1(a>b>0)过点M(,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且,判定直线AB与圆O:x2+y2=的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012年天津市武清区高考数学一模试卷(理科)(解析版) 题型:解答题

已知离心率为的椭圆C:(a>b>0)与过点A(5,0),B(0,)的直线有且只有一个公共点M.
(1)求椭圆C的方程及点M的坐标;
(2)是否存在过点M的直线l,依次交椭圆C、x轴、y轴于点N(异于点M)、P、Q,且满足,若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省宿州市高考数学三模试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C:的左焦点为F,上顶点为E,直线EF截圆x2+y2=1所得弦长为
(1)求椭圆C的方程;
(2)过D(-2,0)的直线l与椭圆C交于不同的两点A、B,.试探究的取值范围.

查看答案和解析>>

同步练习册答案