精英家教网 > 高中数学 > 题目详情

设函数f(x)=2lnx-x2
(1)求函数f(x)的单调递增区间;
(2)设a∈R,讨论关于x的方程f(x)+2x2-5x-a=0的解的个数.

解:(1)函数f(x)的定义域为(0,+∞).
∵f′(x)=2(-x)=
∵x>0,则使f′(x)>0的x的取值范围为(0,1),
故函数f(x)的单调递增区间为(0,1).
(2)∵f(x)=2lnx-x2
∴f(x)+2x2-5x-a=0?a=2lnx+x2-5x.
令g(x)=2lnx+x2-5x,
∴g′(x)=+2x-5=.∵x>0
∴g(x)在(0,),(2,+∞)上单调递增,在(,2)上单调递减.
∵g()=-2ln2-,g(2)=2ln2-6,
∴x∈(0,)时,g(x)∈(-∞,-2ln2-);
x∈(,2)时,g(x)∈(2ln2-6,-2ln2-);x∈(2,+∞)时,g(x)∈(2ln2-6,+∞).
∴当a∈(-2ln2-,+∞)∪(-∞,2ln2-6)时,方程有一解;
当a=-2ln2-或a=2ln2-6时,方程有两解;
当a∈(2ln2-6,-2ln2-)时,方程有三解.
分析:(1)求出函数的定义域,求出导函数,令导函数大于0,求出x的范围即为单调递增区间.
(2)将方程中的a分离出来,构造新函数g(x),求出g′(x),列出x,g′(x),g(x)d的变化情况表,求出g(x)的极值,对a讨论,判断出方程解的个数.
点评:求函数的单调区间,注意要先求出函数的定义域,因为单调区间是定义域的子集;判断方程的根的个数转化为求函数的极值去解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=2lnx-x2
(1)求函数f(x)的单调递增区间;
(2)设a∈R,讨论关于x的方程f(x)+2x2-5x-a=0的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-
1
3
x3+x2+(m2-1)x,(x∈R),其中m>0
(Ⅰ)求函数的单调区间与极值;
(Ⅱ)已知函数g(x)=f(x)+
1
3
有三个互不相同的零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•武汉模拟)定义运算M:x?y=
|y|,x≥y
x,x<y
,设函数f(x)=(x2-3)?(x-1),若函数y=f(x)-c的恰有两个公共零点,则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1-x2(x>1)的反函数为f-1(x),则f-1(-2)=
3
3

查看答案和解析>>

同步练习册答案