精英家教网 > 高中数学 > 题目详情

已知tanα=-数学公式,tanβ=2,且α,β∈(0,π),则α+β等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:由条件可得α为钝角,且 <β<,故 <α+β<.再由tan(α+β)=1求出α+β的值.
解答:∵tanα=-,tanβ=2,且α,β∈(0,π),故α为钝角,且 <β<
<α+β<
再由tan(α+β)===1,可得α+β=
故选C.
点评:本题主要考查两角和的正切公式的应用,根据三角函数的值求角,注意角的范围,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•南京二模)设函数y=f(x)的图象是曲线C1,曲线C2与C1关于直线y=x对称.将曲线C2向右平移1个单位得到曲线C3,已知曲线C3是函数y=log2x的图象.
(I)求函数f(x)的解析式;
(II)设an=nf(x)(n∈N*),求数列{an}的前n项和Sn,并求最小的正实数t,使Sn<tan对任意n∈N*都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点是椭圆
x2
4
+
y2
3
=1
的中心,且焦点与该椭圆右焦点重合.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P(a,0)为x轴上一动点,过P点作直线交抛物线C于A、B两点.
(ⅰ)设S△AOB=t•tan∠AOB,试问:当a为何值时,t取得最小值,并求此最小值.
(ⅱ)若a=-1,点A关于x轴的对称点为D,证明:直线BD过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-π<x<π,t=tan.

(1)试用t表示sinx、cosx;

(2)设x1、x2为适合方程6sinx+5cosx=7的两个不同的值.

求tan与tanx1·tanx2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-π<x<π,t=tan.

(1)试用t表示sinx、cosx;

(2)设x1、x2为适合方程6sinx+5cosx=7的两个不同的值.

求tan与tanx1·tanx2的值.

查看答案和解析>>

同步练习册答案