精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x2+ax+b的图象与x轴的一个交点为(1,0),对称轴为x=2,则函数f(x)的解析式为f(x)=x2-4x+3.

分析 由已知可得方程x2+ax+b=0的两根为1,3,构造函数的交点式方程,可得答案.

解答 解:∵函数f(x)=x2+ax+b的图象与x轴的一个交点为(1,0),对称轴为x=2,
∴方程x2+ax+b=0的两根为1,3,
所以函数f(x)解析式为f(x)=(x-1)(x-3)=x2-4x+3.
故答案为:f(x)=x2-4x+3

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图△ABC,点D是BC中点,$\overrightarrow{AF}$=2$\overrightarrow{FB}$,CF和AD交于点E,设$\overrightarrow{AD}$=a,$\overrightarrow{AB}$=b.
(1)以a,b为基底表示向量$\overrightarrow{AC}$,$\overrightarrow{FC}$.
(2)若$\overrightarrow{AE}$=λ$\overrightarrow{AD}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx(2$\sqrt{3}$cosx-sinx)+1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,1),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(5,-2)共线,则λ的值为(  )
A.$\frac{4}{3}$B.$\frac{4}{13}$C.-$\frac{4}{9}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
(1)求实数a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,对于任意的x∈R,满足条件f(x)+f(-x)=0的函数是(  )
A.f(x)=x${\;}^{\frac{1}{3}}$B.f(x)=sinxC.f(x)=cosxD.f(x)=log2(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(1)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置,并求直线DE到平面AB1C1的距离;如果不存在,请说明理由;
(2)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是(  )
A.x<-1B.x>2C.-1<x<2D.x<-1或x>2

查看答案和解析>>

同步练习册答案