精英家教网 > 高中数学 > 题目详情

在△ABC中,三内角A、B、C所对边分别为a、b、c,设向量数学公式=(b,c-2a),数学公式=(cosC,cosB),且数学公式
(1) 求角B的大小;
(2) 已知a+c=5,b=数学公式,求△ABC的面积.

解:(1)∵
=0,即bcosC+(c-2a)cosB=0,
由正弦定理==得:sinBcosC+sinCcosB-2sinAcosB=0,
sin(B+C)-2sinAcosB=0,sinA-2sinAcosB=0,
∵0<A<π,∴sinA≠0,∴cosB=
∵0<B<π,∴B=
(2)由余弦定理得:b2=a2+c2-2accosB,即7=a2+c2-ac,
∴7=(a+c)2-3ac,
由条件a+c=5得:7=25-3ac,解得ac=6,
∴S△ABC=acsinB=×6×=
分析:(1)由向量垂直满足的关系得到两向量的数量积为0,列出关系式,利用两角和的正弦函数公式及诱导公式化简,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出B的度数;
(2)由余弦定理表示出b2,变形后把b和a+c的值代入即可求出ac的值,然后利用面积公式,由ac的值和sinB的值即可求出△ABC的面积.
点评:此题考查学生掌握平面向量垂直时满足的关系,灵活运用正弦、余弦定理化简求值,灵活运用三角形的面积公式及特殊角的三角函数值化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案