精英家教网 > 高中数学 > 题目详情
已知向量
a
e
,|
e
|=1,对任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,则(  )
A、
a
e
B、
a
⊥(
a
-
e
C、
e
⊥(
a
-
e
D、(
a
+
e
)⊥(
a
-
e
分析:对|
a
-t
e
|≥|
a
-
e
|两边平方可得关于t的一元二次不等式t2-2
a
e
t+2
a
e
-1≥0
,为使得不等式恒成立,则一定有△≤0.
解答:解:已知向量
a
e
,|
e
|=1,对任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|
即|
a
-t
e
|2≥|
a
-
e
|2t2-2
a
e
t+2
a
e
-1≥0

△=(2
a
e
)2-4(2
a
e
-1)≤0即(
a
e
-1)2≤0∴
a
e
-1=0
a
e
-
e
2
=0∴
e
•(
a
-
e
)=0

故选C.
点评:本题主要考查向量的长度即向量的模的有关问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
e
,|
e
|=1,对任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,则(  )
A、
a
e
B、
a
⊥(
a
-
e
C、
e
⊥(
a
-
e
D、(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a≠e,|e|=1对任意t∈R,恒有|a-te|≥|a-e|,则(    )

A.a⊥e                                       B.a⊥(a-e)

C.e⊥(a-e)                                 D.(a+e)⊥(a-e)

查看答案和解析>>

科目:高中数学 来源:浙江 题型:单选题

已知向量
a
e
,|
e
|=1,对任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,则(  )
A.
a
e
B.
a
⊥(
a
-
e
C.
e
⊥(
a
-
e
D.(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
a
e
,|
e
|=1,对任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,则(  )
A.
a
e
B.
a
⊥(
a
-
e
C.
e
⊥(
a
-
e
D.(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

同步练习册答案