精英家教网 > 高中数学 > 题目详情

函数数学公式的最大值是________.

5
分析:令t=log2x,依题意,1≤t≤2,利用双钩函数的单调性质即可求得答案.
解答:∵2≤x≤4,
∴1≤log2x≤2,
令t=log2x,(1≤t≤2),
则y=t+(1≤t≤2),
由双钩函数的性质得:y=t+在[1,2]上单调递减,
∴当t=1时,ymax=5.
故答案为:5.
点评:本题考查双钩函数的单调性质,考查掌握双钩函数的性质,并熟练应用之解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+(a2+1)x在x=1处的导数值为1,则该函数的最大值是(  )
A、
25
16
B、
25
8
C、
25
4
D、
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数y=ax3-15x2+36x-24,x∈[0,4]在x=3处有极值,则函数的最大值是
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤m
,如果目标函数z=x-y的最小值是-1,那么此目标函数的最大值是(  )
A、1B、2C、3D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
(x-1)2   (x≥0)
2x             (x<0)
,若x∈〔0,m+1〕时,函数的最大值是f(m+1),则m的值取范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2+(a2+1)x在x=1处的导数值为1,则该函数的最大值是
25
8
25
8

查看答案和解析>>

同步练习册答案