精英家教网 > 高中数学 > 题目详情
(2008•襄阳模拟)在△ABC中,AC=2
3
,点B是椭圆
x2
5
+
y2
4
=1
的上顶点,l是双曲线x2-y2=-2位于x轴下方的准线,当AC在直线l上运动时.
(1)求△ABC外接圆的圆心P的轨迹E的方程;
(2)过定点F(0,
3
2
)作互相垂直的直线l1、l2,分别交轨迹E于点M、N和点R、Q.求四边形MRNQ的面积的最小值.
分析:(1)先求出B点坐标以及直线l的方程,再根据△ABC外接圆的圆心时三边垂直平分线的交点,也即AC,AB垂直平分线,再利用垂直平分线的性质,用消参法求出P的轨迹E的方程.
(2)先设直线l1、l2,其中一条的方程.因为两直线互相垂直,所以另一条直线方程也可知,在分别于轨迹E的方程联立,求|MN|,|RQ|,再带着参数求四边形MRNQ的面积,用均值不等式求最小值.
解答:解:(1)由椭圆方程
x2
5
+
y2
4
=1及双曲线方程x2-y2=-2可得点B(0,2),直线l的方程是y=-1.
∵AC=2
3
,且AC在直线l上运动.
可设A(m-
3
,-1),C(m+
3
,-1)
,则AC的垂直平分线方程为x=m①
AB的垂直平分线方程为y-
1
2
=
m-
3
3
(x-
m-
3
2
)

∵P是△ABC的外接圆圆心,∴点P的坐标(x,y)满足方程①和②.
由①和②联立消去m得:y=
1
2
+
x-
3
3
(x-
x-
3
2
)
,即y=
1
6
x2

故圆心P的轨迹E的方程为x2=6y
(2)如图,直线l1和l2的斜率存在且不为零,设l1的方程为y=kx+
3
2

∵l1⊥l2,∴l2的方程为y=-
1
k
x+
3
2

y=kx+
3
2
y=
1
6
x2
得x2-6kx-9=0∵△=36k2+36>0,∴直线l1与轨迹E交于两点.
设M(x1,y1),N(x2,y2),则x1+x2=6k,x1x2=-9
∴|MN|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
36k2+36
=6(1+k2)

同理可得:|RQ|=6(1+
1
k2
)

∴四边形MRNQ的面积S=
1
2
|MN|•|QF|+
1
2
|MN|•|RF|=
1
2
|MN|(|QF|+|RF|)=
1
2
|MN|•|RQ|=36(1+k2)(1+
1
k2
1
2
=18(k2+
1
k2
+2)
18(2+2
k2
1
k2
)=72

当且仅当k2=
1
k2
,即k=±1时,等号成立.故四边形MRNQ的面积的最小值为72.
点评:本题考查了消参法求轨迹方程,以及圆锥曲线与均值不等式联系求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•襄阳模拟)i是虚数单位,
(-1+i)(2+i)i3
的虚部为
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•襄阳模拟)已知数列{an}满足an+1=a1-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•襄阳模拟)设min{x1,x2,…,xn}表示x1,x2,…,xn中最小的一个.给出下列命题:
①min{x2,x-1}=x-1;         
 ②设a、b∈R+,有min{a,
b
4a2+b2
}
1
2

③设a、b∈R,a≠0,|a|≠|b|,有min{|a|-|b|,
|a2-b2|
|a|
}=|a|-|b|

其中所有正确命题的序号有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•襄阳模拟)已知函数f(x)=
1
3
x3+
1
2
(b-1)x2+cx
(b、c为常数).
(1)若f(x)在x=1和x=3处取得极值,试求b,c的值;
(2)若f(x)在(-∞,x1)、(x2,+∞)上单调递增,且在(x1,x2)上单调递减,又满足x2-x1>1.求证:b2>2(b+2c).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•襄阳模拟)设函数f(x)=
-x2+3x-2
的定义域为集合A,不等式
x+1
|x-3|
>0
的解集为集合B,则x∈A是x∈B的(  )

查看答案和解析>>

同步练习册答案