精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,其前n项和为Sn,已知a3=11,S9=153,
(1)求数列{an}的通项公式;
(2)设bn=2an,证明:{bn}是等比数列,并求其前n项和An
(3)设cn=
1anan+1
,求其前n项和Bn
分析:(1)依题意,解关于等差数列{an}的首项与公差的方程组即可求得a1与公差d,从而可得数列{an}的通项公式;
(2)利用等比数列的定义可证{bn}是等比数列,利用等比数列的求和公式即可求得其前n项和An
(3)利用裂项法即可求得{
1
anan+1
}前n项和Bn
解答:解:(1)∵{an}是等差数列,a3=11,S9=153,
∴9a5=153,
∴a5=17,
∴其公差d=
a5-a3
5-3
=3,
∴an=a5+(n-5)×d=17+(n-5)×3=3n+2;
(2)∵bn=2an,an=3n+2,
bn+1
bn
=2an+1-an=2d=23=8,且b1=25=32,
∴{bn}是以32为首项,8为公比的等比数列,
∴其前n项和An=
32
7
(8n-1);
(3)∵an=3n+2,
1
anan+1
=
1
(3n+2)(3n+5)
=
1
3
1
3n+2
-
1
3n+5
),
∴Bn=
1
3
[(
1
5
-
1
8
)+(
1
8
-
1
11
)+…+(
1
3n+2
-
1
3n+5
)]
=
1
3
1
5
-
1
3n+5

=
n
15n+25
点评:本题考查等差数列的通项公式与求和,考查等比数列的判断与求和,突出裂项法求和的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案