精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(1)求角B的大小;
(2)设
m
=(sinA,1),
n
=(3,cos2A)
,试求
m
n
的取值范围.
分析:(1)因为(2a-c)cosB=bcosC,所以(2sinA-sinC)cosB=sinBcosC,由sinA>0,所以cosB=
1
2
.由此能求出B的大小.
(2)因为
m
=(sinA,1),
n
=(3,cos2A)
,所以
m
n
=3sinA+cos2A=-2(sinA-
3
4
2+
17
8
,由
0°<A<90°
B=60°
0°<C<90°
,得
30°<A<90°,从而sinA∈(
1
2
,1)
,由此能求出
m
n
的取值范围.
解答:解:(1)因为(2a-c)cosB=bcosC,
所以(2sinA-sinC)cosB=sinBcosC,…(3分)
即2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA.
而sinA>0,
所以cosB=
1
2
…(6分)
故B=60°…(7分)
(2)因为
m
=(sinA,1),
n
=(3,cos2A)

所以
m
n
=3sinA+cos2A…(8分)
=3sinA+1-2sin2A=-2(sinA-
3
4
2+
17
8
…(10分)
0°<A<90°
B=60°
0°<C<90°

0°<A<90°
0°<120°-A<90°

所以30°<A<90°,
从而sinA∈(
1
2
,1)
…(12分)
m
n
的取值范围是(2,
17
8
]
.…(14分)
点评:本题考查正弦函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意三角函数恒等式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案