精英家教网 > 高中数学 > 题目详情

已知函数数学公式是奇函数,
(1)求a的值;
(2)求函数f(x)的定义域;
(3)求证f(x)在定义域上是单调减函数.

解:(1)∵函数是奇函数,∴f(x)=-f(-x),
即ln=-ln=ln,则=,化简得:4-x2=a2-x2
解得a=±2,当a=-2时,f(x)=ln(-1)故舍去,故a=2.
(2)由(1)知,a=2故f(x)=ln
要使函数有意义,则>0,即(2-x)(2+x)>0,
解得,-2<x<2;故函数f(x)的定义域(-2,2).
(3)证明:任取实数x1,x2∈(-2,2),且x1<x2
-==
∵x1,x2∈(-2,2),x1<x2
∴2+x1>0,2+x2>0;x2-x1>0,
->0,即
∵函数y=lnx在定义域内时增函数,∴f(x1)>f(x2),
∴f(x)在定义域(-2,2)上是单调减函数.
分析:(1)由奇函数的定义知f(x)=-f(-x),列出关于a的方程求解,注意把所求的值代入验证;
(2)把(1)的结果代入,根据对数的真数大于零列不等式求解,最后用集合或区间的形式表示;
(3)在定义域内任取两个自变量且规定大小,在作差比较真数的大小,用通分后在化简,判断符号后再根据y=lnx的单调性,判断出f(x1)和f(x2)的大小.
点评:本题考查函数的奇偶性和用定义法证明单调性,对于含有对数函数的复合函数在证明时,先对真数作差比较真数的大小,再利用对数函数的单调性比较f(x1)和f(x2)大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x+1
x-1
,(a>0,且a≠1)
(Ⅰ)求函数的定义域,并证明f(x)=loga
x+1
x-1
在定义域上是奇函数;
(Ⅱ)对于x∈[2,4]f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,求m的取值范围;
(Ⅲ)当n≥2,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数h(x)=2x,且h(x)=f(x)+g(x),其中f(x)是偶函数,g(x)是奇函数.
(1)求f(x)和g(x)的解析式;
(2)证明:f(x)是(0,+∞)上的单调增函数;
(3)设F(x)=4a•[g(x)+2-x-1]+4x+1,x∈[0,2],讨论F(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:2014届福建省四地六校高三上学期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数    是奇函数.

(1)求实数的值;

(2)若函数在区间上单调递增,求实数的取值范围;

(3)求函数的值域.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数    是奇函数.

(1)求实数的值;

(2)若函数在区间上单调递增,求实数的取值范围;

(3)求函数的值域

查看答案和解析>>

同步练习册答案