精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=log(2a-1)(2x+1)在区间(0,+∞)上满足f(x)>0,则a的取值范围是(1,+∞).

分析 利用对数函数的图象与性质即可得出答案.

解答 解:∵x∈(0,+∞),∴2x+1∈(1,+∞);
又∵f(x)>0,
∴2a-1>1,
解得a>1,
∴a的取值范围是(1,+∞).

点评 本题考查了对数函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=logax,若不等式|f(x)|>1对任意x∈[2,+∞)恒成立,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)∪(1,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(1,2)D.($\frac{1}{2}$,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sin($\frac{π}{2}$+θ)<0,且cos($\frac{π}{2}-θ$)>0,则θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若执行如图的程序框图,则输出的n的值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.
( I)证明:CD⊥平面PBD
(Ⅱ)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A、B、C的对边分别是a、b、c,其中b=c=2,若函数f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}x$的极大值是cosA,则△ABC的面积等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=$\frac{5}{3}$,且3an+1=an+2.
(1)设bn=an-1,证明:数列{bn}是等比数列,并求出{an}的通项公项;
(2)设${c_n}=log_3^{\frac{{{{({a_n}-1)}^2}}}{4}}$,数列$\left\{{\frac{1}{{{c_n}{c_{n+2}}}}}\right\}$的前n项和为Tn,是否存在最小的正整数m,使得对于任意的n∈N*,均有Tn<$\frac{m}{16}$成立,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z=$\frac{a-i}{1-i}$(a∈R,i是虚数单位)是纯虚数,则复数3-z的共轭复数是(  )
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,与函数y=x表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}$B.$f(x)=\root{5}{x^5}$C.$f(x)={(\sqrt{x})^2}$D.f(x)=|x|

查看答案和解析>>

同步练习册答案