精英家教网 > 高中数学 > 题目详情

【题目】某玩具所需成本费用为PP=1 000+5xx2而每套售出的价格为Q其中Q(x)=a (abR),

(1)问:玩具厂生产多少套时使得每套所需成本费用最少?

(2)若生产出的玩具能全部售出且当产量为150套时利润最大此时每套价格为30ab的值.(利润=销售收入-成本).

【答案】(1)该玩具厂生产100套时每套所需成本最少.(2)a=25,b=30.

【解析】

(1)先建立每套所需成本费用函数关系式,再根据基本不等式求最值,(2)先根据利润=销售收入-成本建立利润函数关系式,再根据二次函数性质确定开口方向、对称轴位置以及最大值取法,解方程与不等式组可得ab的值.

解:(1)每套玩具所需成本费用为

x+5≥2+5=25,

x,即x=100时等号成立,

故该玩具厂生产100套时每套所需成本最少.

(2)设售出利润为w,则wx·Q(x)-P

x

x2+(a-5)x-1 000,

由题意得解得a=25,b=30.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的单调函数,且对于任意正数,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18

A. B. 9 C. 18 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,和两点0,1),-1,0),给出如下结论:

①不论为何值时, 都互相垂直;

②当变化时, 分别经过定点A0,1)和B-1,0);

③不论为何值时, 都关于直线对称;

④如果交于点,则的最大值是1

其中,所有正确的结论的个数是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,前n项和为Sn , 且Sn= ,数列{bn}的前n项和为Tn , 且bn=
(1)求数列{an}的通项公式;
(2)是否存在m,n∈N* , 使得Tn=am , 若存在,求出所有满足题意的m,n,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设离心率为 的椭圆E: + =1(a>b>0)的左、右焦点为F1 , F2 , 点P是E上一点,PF1⊥PF2 , △PF1F2内切圆的半径为 ﹣1.
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设

①若,求函数的零点;

②若函数存在零点,求的取值范围.

(2)设,若对任意恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8


(1)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(2)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(3)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1 , 表格中数据的平均数记为μ0 . 若μ0≤μ1 , 写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,若关于x的方程x2+x+|a﹣ |+|a|=0有实根,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒 弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案