| A. | [-2,-1] | B. | (-∞,-1] | C. | [1,2] | D. | [1,+∞) |
分析 令g(x)=x2-2ax+3,若函数f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是单调递增,则函数g(x)在区间(-1,1)内单调递增,且恒大于等于0,进而得到a的取值范围.
解答 解:令g(x)=x2-2ax+3,
∵函数f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是单调递增,
则函数g(x)在区间(-1,1)内单调递增,且恒大于等于0,
∴a≤-1且g(-1)≥0,
∴a≤-1且4+2a≥0,
∴-2≤a≤-1,
故选:A.
点评 本题考查的知识点是函数的单调性,其中根据复合函数的单调性和函数有意义的原则,得到函数g(x)=x2-2ax+3,在区间(-1,1)内单调递增,且恒大于等于0,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$+1 | C. | $\frac{1}{2}$($\sqrt{3}$+1) | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 三个方程中至多有一个方程有两个相异实根 | |
| B. | 三个方程都有两个相异实根 | |
| C. | 三个方程都没有两个相异实根 | |
| D. | 三个方程都没有实根 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$ | B. | $[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ | ||
| C. | $[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$ | D. | $[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com