| A. | {x|x>0} | B. | {x|x<0} | C. | {x|x<-1或x>1} | D. | {x|x<-1或0<x<1} |
分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.
解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f′(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+2,
∴g(x)>2,
又∵g(0)=e0f(0)-e0=3-1=2,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故选:A.
点评 本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [-1,2] | C. | [-1,1] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com