精英家教网 > 高中数学 > 题目详情
17.在三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.
(1)证明:A1M⊥平面MAC;
(2)证明:MN∥平面A1ACC1

分析 (1)证明A1M⊥MA,AM⊥AC,故可得A1M⊥平面MAC;
(2)连结AB1,AC1,由中位线定理得出MN∥AC1,故而MN∥平面A1ACC1

解答 证明:(1)由题设知,∵A1A⊥面ABC,AC?面ABC,∴AC⊥A1A,
又∵∠BAC=90°,∴AC⊥AB,
∵AA1?平面AA1BB1,AB?平面AA1BB1,AA1∩AB=A,
∴AC⊥平面AA1BB1,A1M?平面AA1BB1
∴A1M⊥AC.
又∵四边形AA1BB1为正方形,M为A1B的中点,∴A1M⊥MA,
∵AC∩MA=A,AC?平面MAC,MA?平面MAC,∴A1M⊥平面MAC…(6分)
(2)连接AB1,AC1,由题意知,点M,N分别为AB1和B1C1的中点,∴MN∥AC1
又MN?平面A1ACC1,AC1?平面A1ACC1,∴MN∥平面A1ACC1.…(12分)

点评 本题考查了面面垂直,线面平行的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设二次函数f(x)=ax2+bx+c(a≠0)的导数为f'(x),f'(0)>0,若?x∈R,恒有f(x)≥0,则$\frac{f(1)}{f'(0)}$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinx+cosx=$\frac{1}{5}$(0≤x<π),则tanx的值等于(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点M(x0,1),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=2sinx+cosx,若函数g(x)=f(x)-m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y+2=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2017的值为$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}{e^{|x-1|}}\;\;,\;x>0\\-{x^2}-2x+1\;,x≤0\end{array}\right.$,若关于x的方程f2(x)-3f(x)+a=0(a∈R)有8个不等的实数根,则a的取值范围是(  )
A.$(0,\frac{1}{4})$B.$(\frac{1}{3},3)$C.(1,2)D.$(2,\frac{9}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,且${cos^2}\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a=(-1,-3,2)$,$\vec b=(1,2,0)$,则$\vec a•\vec b$=(  )
A.-5B.-7C.3D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案