分析 (1)证明A1M⊥MA,AM⊥AC,故可得A1M⊥平面MAC;
(2)连结AB1,AC1,由中位线定理得出MN∥AC1,故而MN∥平面A1ACC1.
解答
证明:(1)由题设知,∵A1A⊥面ABC,AC?面ABC,∴AC⊥A1A,
又∵∠BAC=90°,∴AC⊥AB,
∵AA1?平面AA1BB1,AB?平面AA1BB1,AA1∩AB=A,
∴AC⊥平面AA1BB1,A1M?平面AA1BB1
∴A1M⊥AC.
又∵四边形AA1BB1为正方形,M为A1B的中点,∴A1M⊥MA,
∵AC∩MA=A,AC?平面MAC,MA?平面MAC,∴A1M⊥平面MAC…(6分)
(2)连接AB1,AC1,由题意知,点M,N分别为AB1和B1C1的中点,∴MN∥AC1.
又MN?平面A1ACC1,AC1?平面A1ACC1,∴MN∥平面A1ACC1.…(12分)
点评 本题考查了面面垂直,线面平行的判定,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{4})$ | B. | $(\frac{1}{3},3)$ | C. | (1,2) | D. | $(2,\frac{9}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等腰三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -7 | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com