精英家教网 > 高中数学 > 题目详情
8.已知sinx+cosx=$\frac{1}{5}$(0≤x<π),则tanx的值等于(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

分析 先根据sinx+cosx的值和二者的平方关系联立求得cosx的值,进而根据同角三角函数的基本关系求得sinx的值,最后利用商数关系求得tanx的值.

解答 解:由sinx+cosx=$\frac{1}{5}$,得sinx=$\frac{1}{5}$-cosx,代入sin2x+cos2x=1,
得:(5cosx-4)(5cosx+3)=0,
∴cosx=$\frac{4}{5}$或cosx=-$\frac{3}{5}$,当cosx=$\frac{4}{5}$时,得sinx=-$\frac{3}{5}$,
又∵0≤x<π,
∴sinx≥0,故这组解舍去;
∴当cosx=-$\frac{3}{5}$时,sinx=$\frac{4}{5}$,tanx=-$\frac{4}{3}$.
故选:B.

点评 本题主要考查了同角三角函数的基本关系的应用.解题的过程中要特别注意根据角的范围确定三角函数值的正负号,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知命题,若m>$\frac{1}{4}$,则mx2-x+1=0无实根,写出该命题的逆命题、否命题、逆否命题,并判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从含有两件正品a1,a2和一件次品b的3件产品中每次任取一件,每次取出后不放回,连续取两次.
(1)写出基本事件空间;
(2)求取出的两件产品中恰有一件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,(不需证明)
(3)若对任意的t∈R,不等式f(t2+2)+f(t2-tk)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,F1,F2分别是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左,右焦点,椭圆的离心率为$\sqrt{3}$-1,P为椭圆上第一象限内的一点,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,圆A与△PF1F2三边所在直线都相切,切点分别为B,C,D,则圆A的半径为(  )
A.4$\sqrt{3}$B.4$\sqrt{3}$-6C.4$\sqrt{3}$-2D.6-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将数30012(4)转化为十进制数为(  )
A.524B.260C.256D.774

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则双曲线C的渐近线方程是(  )
A.y=±xB.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.$y=±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.
(1)证明:A1M⊥平面MAC;
(2)证明:MN∥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.双曲线$\frac{y^2}{16}-\frac{x^2}{9}=1$的焦点是(0,5),(0,-5);离心率为$\frac{5}{4}$;渐近线为y=$±\frac{4}{3}$x.

查看答案和解析>>

同步练习册答案