精英家教网 > 高中数学 > 题目详情
如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.
(Ⅰ)当r=2时,求满足条件的P点的坐标;
(Ⅱ)当r∈(1,+∞)时,求点N的轨迹G的方程;
(Ⅲ)过点P(0,2)的直线l与(Ⅱ)中轨迹G相交于两个不同的点E、F,若,求直线l的斜率的取值范围.
【答案】分析:(1)由已知得,r=2时,可求得M点的坐标为(-1,0),设N(x,y)联立方程可解得MN的中点P坐标;
(2)设N(x,y)由已知得,先利用圆方程求得M点的坐标,再设P(0,b),得:r=b2+1.利用圆的方程与x+1-r=0消去r,即可得出点N的轨迹方程;
(3)设直线l的方程为y=kx+2,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量的数量积公式即可求得k值范围,从而解决问题.
解答:解:(1):由已知得,r=2时,可求得M点的坐标为(-1,0),
设N(x,y)则解得N(1,±2).
所以MN的中点P坐标为(0,±1).
(2):设N(x,y)由已知得,在圆方程中令y=0,求得M点的坐标为(1-r,0).
设P(0,b),则由kCPkmp=-1(或用勾股定理)得:r=b2+1.
,消去r,
又r>1,所以点N的轨迹方程为y2=4x(x≠0).
(3)设直线l的方程为y=kx+2,M(x1,x2),N(x2,y2),
消去y得k2x2+(4k-4)x+4=0,因为直线l与抛物线y2=4x(x>0)相交于两个不同的点M,N,
所以△=-32k+16>0,所以
又因为,所以(x1-1)(x2-1)+y1y2>0,
所以(k2+1)x1x2+(2k-1)(x1+x2)+5>0,得k2+12k>0,
所以k>0或k<-12,
综上可得
点评:本题是中档题,考查动点的轨迹方程的求法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•朝阳区二模)如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.
(Ⅰ)当r=2时,求满足条件的P点的坐标;
(Ⅱ)当r∈(1,+∞)时,求点N的轨迹G的方程;
(Ⅲ)过点P(0,2)的直线l与(Ⅱ)中轨迹G相交于两个不同的点E、F,若
CE
CF
>0
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆C:x2+y2+10x+10y=0,点A(0,6).
(1)求圆心在直线y=x上,经过点A,且与圆C相切的圆N的方程;
(2)若过点A的直线m与圆C交于P,Q两点,且圆弧PQ恰为圆C周长的
14
,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3,已知椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且过点(
2
6
2
)

( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省深圳市宝安中学、翠园中学、外国语学校高三(上)联考数学试卷(文科)(解析版) 题型:解答题

如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.
(Ⅰ)当r=2时,求满足条件的P点的坐标;
(Ⅱ)当r∈(1,+∞)时,求点N的轨迹G的方程;
(Ⅲ)过点P(0,2)的直线l与(Ⅱ)中轨迹G相交于两个不同的点E、F,若,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案