精英家教网 > 高中数学 > 题目详情
12.设i是虚数单位,复数$\frac{a+2i}{1+i}$为实数,则实数a的值为(  )
A.1B.2C.3D.4

分析 由复数代数形式的乘除运算化简,再由虚部为0得答案.

解答 解:∵$\frac{a+2i}{1+i}$=$\frac{(a+2i)(1-i)}{(1+i)(1-i)}=\frac{a+2+(2-a)i}{2}$为实数,
∴2-a=0,即a=2.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)(x∈R)的图象如图所示,则不等式x•f(x)<0的解集为(  )
A.$(-∞,\frac{1}{2})∪(\frac{1}{2},2)$B.(-1,0)∪(1,3)C.$(-∞,\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(-∞,\frac{1}{2})∪(2,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α∈(0,$\frac{π}{2}$))与圆C:(x-1)2+(y-2)2=4相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求$\frac{1}{|OA|}$$+\frac{1}{|OB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将25个数排成五行五列:

已知第一行成等差数列,而每一列都成等比数列,且五个公比全相等.若a24=4,a41=-2,a43=10,则a11×a55的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,过原点的直线l与双曲线交于M,N两点,且$\overrightarrow{MF}•\overrightarrow{NF}$=0,△MNF的面积为ab.则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O的方程为 x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0)C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0)D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ex,g(x)=-x2+2x+a,a∈R.
(Ⅰ)讨论函数h(x)=f(x)g(x)的单调性;
(Ⅱ)记φ(x)=$\left\{\begin{array}{l}f(x),x<0\\ g(x),x>0\end{array}$,设A(x1,φ(x1)),B(x2,φ(x2))为函数φ(x)图象上的两点,且x1<x2
(ⅰ)当x>0时,若φ(x)在A,B处的切线相互垂直,求证x2-x1≥1;
(ⅱ)若在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(1,3),B(4,-1),则与向量$\overrightarrow{AB}$反方向的单位向量的坐标为(  )
A.$(\frac{3}{5},-\frac{4}{5})$B.$(\frac{4}{5},\frac{3}{5})$C.$(-\frac{3}{5},\frac{4}{5})$D.$(-\frac{4}{5},\frac{3}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>0且a≠1函数f(x)=ax+x2-xlna-a
(1)当a=e时,求函数f(x)的单调区间;(其中e为自然对数的底数)
(2)求函数f(x)的最小值;
(3)指出函数f(x)的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案