精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1 , AB1∩A1B=E,D为AC上的点,B1C∥平面A1BD.
(1)求证:BD⊥平面A1ACC1
(2)若AB=1,且ACAD=1,求二面角B﹣A1D﹣B1的余弦值.

【答案】
(1)证明:连结ED,

∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,

∴B1C∥ED,

∵E为AB1中点,∴D为AC中点,

∵AB=BC,∴BD⊥AC①,

法一:由A1A⊥平面ABC,BD平面ABC,得A1A⊥BD,②,

由①②及A1A、AC是平面A1ACC1内的两条相交直线,

得BD⊥平面A1ACC1

法二:由A1A⊥平面ABC,A1A平面A1ACC1

∴平面A1ACC1⊥平面ABC,又平面A1ACC1∩平面ABC=AC,

得BD⊥平面A1ACC1


(2)解:由AB=1,得BC=BB1=1,

由(1)知DA= AC,又ACDA=1,得AC2=2,

∵AC2=2=AB2+BC2,∴AB⊥BC,

如图以B为原点,建立空间直角坐标系B﹣xyz,如图示,

则A1(1,0,1),B1(0,0,1),D( ),

=(1,0,0), =( ),

=(x,y,z)是平面A1B1D的一个法向量,

,令z=1,得 =(0,2,1),

=(a,b,c)为平面A1BD的一个法向量,则

令c=1,得 =(﹣1,1,1),

依题意知二面角B﹣A1D﹣B1为锐二面角,设其大小为θ,

则cosθ=|cos< >|= = =

即二面角B﹣A1D﹣B1的余弦值为

其它解法请参照给分.


【解析】(Ⅰ)法一:连结ED,推导出B1C∥ED,BD⊥AC,A1A⊥BD,由此能证明BD⊥平面A1ACC1 . 法二:连结ED,推导出A1A⊥平面ABC,由平面A1ACC1⊥平面ABC,能证明BD⊥平面A1ACC1 . (Ⅱ)以B为原点,建立空间直角坐标系B﹣xyz,利用向量法能求出二面角B﹣A1D﹣B1的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的”更相减损术“.执行该程序框图,若输入a,b,i的值分别为6,8,0时,则输出的i=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.若命题p:?x0∈R,x02﹣x0+1<0,则¬p:?x?R,x2﹣x+1≥0
B.已知相关变量(x,y)满足回归方程 =2﹣4x,若变量x增加一个单位,则y平均增加4个单位
C.命题“若圆C:(x﹣m+1)2+(y﹣m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4﹣a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣a|+a.
(1)当a=3时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[不等式选讲]

设函数f(x)=a(x﹣1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的短轴长为2 ,离心率e=
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图像向左平移 个单位,再向上平移1个单位,得到g(x)的图像.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],则2x1﹣x2的最大值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案