精英家教网 > 高中数学 > 题目详情
9.已知i是虚数单位,且集合$M=\left\{{z|z={{({\frac{i-1}{i+1}})}^n},n∈{N^*}}\right\}$,则集合M的非空子集的个数为(  )
A.16B.15C.8D.7

分析 求出集合M的元素,从而求出M的非空子集的个数即可.

解答 解:由$\frac{i-1}{i+1}$=$\frac{(i-1)(1-i)}{2}$=i,
得M={i,-1,-i,1},
故M的非空子集的个数是24-1=15个,
故选:B.

点评 本题考查了复数的运算,考查集合的非空子集的个数,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三边AB,BC,AC的长依次成等差数列,且|AB|>|AC|,B(-1,0)C(1,0)则顶A的轨迹方程为(  )
A.$\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$B.$\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x<0)
C.$\frac{y^2}{{{4^{\;}}}}+\frac{x^2}{3}=1$D.$\frac{x^2}{{{4^{\;}}}}+\frac{y^2}{3}=1$(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.
(1)求证:数列$\left\{{\frac{{{a_n}+2}}{n}}\right\}$是等比数列;
(2)设${b_n}=\frac{{{3^{n-1}}}}{{{a_n}+2}},n∈{N^*}$,求证:当n≥2,n∈N*时,${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的偶函数,当x<0时,f(x)=${(\frac{1}{3})^x}$,那么f($\frac{1}{2}$)的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于正整数k,记g(k)表示k的最大奇数因数.例如:g(1)=1,g(2)=1,g(10)=5.设Sn=g(1)+g(2)+g(3)+…+g(2n
给出下列四个结论:
①g(3)+g(4)=10
②?m∈N*,都有g(2m)=g(m)
③S1+S2+S3=30
④Sn-Sn-1=4n-1,n≥2,n∈N*
则以上结论正确有②③④.(填写所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正数数列{an}的前n项和Sn,满足a1an=S1+Sn(n∈N*
(1)求{an}的通项公式;
(2)设${b_n}=\frac{n}{a_n}$,求证:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足前n项和Sn=1-an(n∈N*
(1)求数列{an}的通项公式;
(2)设bn=log${\;}_{\frac{1}{2}}$an,求证:$\frac{1}{{{b}_{1}}^{2}}+\frac{1}{{{b}_{2}}^{2}}$+…+$\frac{1}{{{b}_{n}}^{2}}$<$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$\frac{sin38°sin38°+cos38°sin52°-ta{n}^{2}15°}{3tan15°}$等于(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由;
①$f(x)={log_2}x,x>0,x=g(t)=t+\frac{1}{t},t>0$;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R.
(2)设f(x)=log2x的定义域为x∈[2,8],已知$x=g(t)=\frac{{m{t^2}-3t+n}}{{{t^2}+1}}$是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.

查看答案和解析>>

同步练习册答案