分析 (1)利用递推关系与等比数列的通项公式即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.
解答 (1)解:当n=1时,$a_1^2={a_1}+{a_1}$,又an>0,∴a1=2;
当n≥2时,an=Sn-Sn-1=(2an-2)-(2an-1-2),∴an=2an-1,
∴数列{an}是等比数列,首项为2,公比为2.
∴an=2n.
(2)证明:${b_n}=\frac{n}{a_n}$=$\frac{n}{{2}^{n}}$,
令Tn=b1+b2+…+bn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
相减可得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=$1-\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$<2.
点评 本题考查了“错位相减法”、等比数列的定义通项公式与求和公式、“放缩”法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 15 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{e}$,$\frac{1}{\sqrt{e}}$) | B. | (-$\frac{1}{\sqrt{e}}$,$\sqrt{e}$) | C. | (-∞,$\sqrt{e}$) | D. | (-∞,$\frac{1}{\sqrt{e}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既有最大值又有最小值 | B. | 有最大值没有最小值 | ||
| C. | 有最小值没有最大值 | D. | 既没有最大值也没有最小值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com