精英家教网 > 高中数学 > 题目详情
3.如图,将两块三角板拼在一起组成一个平面四边形ABCD,若$\overrightarrow{AC}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R).则x+y=1+$\frac{4\sqrt{3}}{3}$.

分析 根据题意,过点C作CE⊥AB,CF⊥AD,设AB=1,根据三角形的边角关系,用$\overrightarrow{AB}$、$\overrightarrow{AD}$表示出$\overrightarrow{AC}$,求出x、y的值即可.

解答 解:设AB=1,则AD=$\sqrt{3}$,BD=BC=2,
过点C作CE⊥AB,CF⊥AD,垂足分别为E、F,
如图所示;
则BE=$\sqrt{3}$,AF=1,
且$\overrightarrow{AC}$=$\overrightarrow{AE}$+$\overrightarrow{AF}$=($\sqrt{3}$+1)$\overrightarrow{AB}$+$\frac{\sqrt{3}}{3}$$\overrightarrow{AD}$,
又$\overrightarrow{AC}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,
所以x=$\sqrt{3}$+1,y=$\frac{\sqrt{3}}{3}$,
x+y=1+$\frac{4\sqrt{3}}{3}$.
故答案为:1+$\frac{4\sqrt{3}}{3}$.

点评 本题考查了三角形的边角关系以及平面向量的线性表示问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点$(2,\sqrt{6})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程.
(2)求证:AP⊥OM.
(3)试问:$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正数数列{an}的前n项和Sn,满足a1an=S1+Sn(n∈N*
(1)求{an}的通项公式;
(2)设${b_n}=\frac{n}{a_n}$,求证:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCD是正方形,O是该正方体的中心,P是平面ABCD外一点,PO⊥平面ABCD,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$\frac{sin38°sin38°+cos38°sin52°-ta{n}^{2}15°}{3tan15°}$等于(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosx+sinx,1),$\overrightarrow{b}$=(cosx+sinx,-1)函数g(x)=4$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数g(x)在[$\frac{π}{12}$,$\frac{π}{3}$]上的值域;
(2)若x∈[0,2016π],求满足g(x)=0的实数x的个数;
(3)求证:对任意λ>0,都存在μ>0,使g(x)+x-4<0对x∈(-∞,λμ)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,若关于x的方程f(x)-a2+2a=0有三个不同的实数根,则实数a的取值范围是0<a<1或1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log2(16x+k)-2x (k∈R)是偶函数.
(1)求k;
(2)若不等式m-1≤f(x)≤2m+log217在x∈[-1,$\frac{1}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.我国唐代诗人王维诗云:“明月松间照,清泉石上流”,这里明月和清泉,都是自然景物,没有变,形容词“明”对“清”,名词“月”对“泉”,词性不变,其余各词均如此.变化中的不变性质,在文学和数学中都广泛存在.比如我们利用几何画板软件作出抛物线C:x2=y的图象(如图),过交点F作直线l交C于A、B两点,过A、B分别作C的切线,两切线交于点P,过点P作x轴的垂线交C于点N,拖动点B在C上运动,会发现$\frac{|NP|}{|NF|}$是一个定值,该定值是1.

查看答案和解析>>

同步练习册答案