精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}满足a1=3,a5=15,数列{bn}满足b1=4,b5=31,设正项等比数列{cn}满足cn=bn-an
(1)求数列{an}和{cn}的通项公式;
(2)求数列{bn}的前n项和.

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用等差数列与等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,依题意得a5=a1+4d⇒3+4d=15⇒d=3,所以an=3+3(n-1)=3n.
设等比数列{cn}的公比为q,依题意得c1=b1-a1=4-3=1,c5=b5-a5=31-15=16,
从而${c_5}={c_1}{q^4}⇒16=1×{q^4}⇒q=2$,所以${c_n}=1×{2^{n-1}}={2^{n-1}}$.
(2)因为${c_n}={b_n}-{a_n}⇒{b_n}={a_n}+{c_n}⇒{b_n}=3n+{2^{n-1}}$,所以数列{bn}的前n项和Sn=(3+1)+(6+2)+(9+22)+…+(3n+2n-1
=(3+6+…+3n)+(1+2+22+…+2n-1
=$\frac{n(3+3n)}{2}$+$\frac{{2}^{n}-1}{2-1}$
=$\frac{3{n}^{2}+3n}{2}$+2n-1.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>0,则不等式(x+2016)2f(x+2016)-4f(-2)<0的解集为(  )
A.(-∞,-2016)B.(-2018,-2016)C.(-2016,-2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-8)}$的定义域为($\frac{8}{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点$(2,\sqrt{6})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程.
(2)求证:AP⊥OM.
(3)试问:$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=-1,${a_{n+1}}=\frac{{(3n+3){a_n}+4n+6}}{n},n∈{N^*}$.
(1)求证:数列$\left\{{\frac{{{a_n}+2}}{n}}\right\}$是等比数列;
(2)设${b_n}=\frac{{{3^{n-1}}}}{{{a_n}+2}},n∈{N^*}$,求证:当n≥2,n∈N*时,${b_{n+1}}+{b_{n+2}}+…+{b_{2n}}<\frac{4}{5}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数①y=2x;②y=log2x;③y=x-1;④y=$\sqrt{x}$,则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是(  )
A.②①③④B.②③①④C.④①③②D.④③①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的偶函数,当x<0时,f(x)=${(\frac{1}{3})^x}$,那么f($\frac{1}{2}$)的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正数数列{an}的前n项和Sn,满足a1an=S1+Sn(n∈N*
(1)求{an}的通项公式;
(2)设${b_n}=\frac{n}{a_n}$,求证:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,若关于x的方程f(x)-a2+2a=0有三个不同的实数根,则实数a的取值范围是0<a<1或1<a<2.

查看答案和解析>>

同步练习册答案