选修4-4:坐标系与参数方程选讲.
已知曲线
的参数方程为
(
为参数),曲线
的极方程为
.
(Ⅰ)分别求曲线
和曲线
的普通方程;
(Ⅱ)若点
,求
的最小值.
科目:高中数学 来源:2017届安徽蚌埠二中等四校高三10月联考数学(理)试卷(解析版) 题型:选择题
某品牌牛奶的广告费用
与销售额
的统计数据如下表:
![]()
根据上表可得回归方程
中的
为9.4,据此模型预报广告费用为7万元时销售额为( )
A.74.9万元 B.65.5万元
C.67.7万元 D.72.0万元
查看答案和解析>>
科目:高中数学 来源:2016届河南郑州一中教育集团高三文押题二数学试卷(解析版) 题型:选择题
已知双曲线和离心率为
的椭圆有相同的焦点
,
是两曲线的一个公共点,若
,则双曲线的离心率等于( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2017届广西名校高三上第一次摸底数学(理)试卷(解析版) 题型:解答题
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求
关于
的线性回归方程
;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中数学 来源:2017届广西名校高三上第一次摸底数学(理)试卷(解析版) 题型:解答题
点
是椭圆
上一点,
是椭圆的右焦点,
,则点
到抛物线
的准线的距离为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2017届甘肃肃南裕固族自治县一中高三文10月月考数学试卷(解析版) 题型:解答题
如图,在三棱锥
中,
,平面
平面
、
分别为
、
中点.
![]()
(1)求证:
平面
;
(2)求证:
;
(3)求二面角
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com