某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
|
日 期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
|
温差 |
10 |
11 |
13 |
12 |
8 |
|
发芽数 |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
已知回归直线方程是:
,其中
,
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(1)
.(2)
.(3)该研究所得到的线性回归方程是可靠的.
【解析】
试题分析:(1)设抽到不相邻两组数据为事件
,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,
所以
.
(2)由数据,求得
.
由公式,求得
,
.
所以y关于x的线性回归方程为
.
(3)当x=10时,
,|22-23|<2;
同样,当x=8时,
,|17-16|<2.
所以,该研究所得到的线性回归方程是可靠的.
考点:本题考查了线性回归直线方程的求解及运用
点评:求线性回归方程的步骤:计算平均数
;计算
与
的积,求
;计算
;将结果代入公式求
;用
求
;写出回归直线方程.
科目:高中数学 来源: 题型:
| 日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(°C) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
| y |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差(x) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y | 23 | 25 | 30 | 26 | 16 |
| y |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(°C) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
| y |
| b |
| |||||||
|
| |||||||
|
| a |
. |
| y |
| b |
. |
| x |
查看答案和解析>>
科目:高中数学 来源: 题型:
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日到3日的每天昼夜温差与实验室每天每100颗种子发芽数,得到如下资料:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| 日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(°C) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com