分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答 解:作出不等式组对应的平面区域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直线y=$-\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线经过点C时,
直线y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小,![]()
由$\left\{\begin{array}{l}{x-3=0}\\{x+y-3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,即C(3,0)
此时z=3+2×0=3.
故答案为:3
点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 130万元 | B. | 130.25万元 | C. | 120万元 | D. | 100万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{3{y}^{2}}{2}$=1 | C. | $\frac{5{y}^{2}}{3}$-x2=1 | D. | $\frac{3{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com