【题目】若函数f(x)的定义域为[2a﹣1,a+1],值域为[a+3,4a],则a的取值范围为 .
【答案】1<a<2
【解析】∵函数f(x)的定义域为[2a﹣1,a+1],值域为[a+3,4a],
∴2a﹣1<a+1,a+3<4a,
解得,1<a<2.
所以答案是:1<a<2.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法和函数的值域的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,点E为棱PC的中点.AD=DC=AP=2AB=2.
(1)证明:BE⊥平面PDC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.
(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;
(2)要使海报四周空白面积最小,版心的高和宽该如何设计?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 对任意的n∈N* , 点(n,Sn)恒在函数y= x的图象上.
(1)求数列{an}的通项公式;
(2)记Tn= ,若对于一切的正整数n,总有Tn≤m成立,求实数m的取值范围;
(3)设Kn为数列{bn}的前n项和,其中bn=2an , 问是否存在正整数n,t,使 成立?若存在,求出正整数n,t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,设角A,B,C的对边分别为a,b,c,向量 =(cosA,sinA), =( ﹣sinA,cosA),若 =1.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.“φ= ”是“函数y=sin(2x+?)为偶函数”的充要条件
B.若“p且q”为假,则p,q至少有一个是假命题
C.命题“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
D.当a<0时,幂函数y=xa在(0,+∞)上是单调递减
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com