分析 (1)利用二倍角公式、辅助角公式,化简函数,然后写出最小正周期、振幅、初相;
(2)结合正弦函数的单调性,即可得出结论.
解答 解:(1)函数f(x)=(sinx+cosx)2+2cos2x=1+sin2x+1+cos2x=2+$\sqrt{2}$sin(2x+$\frac{π}{4}$),
f(x)的最小正周期π、振幅$\sqrt{2}$、初相$\frac{π}{4}$;
(2)令2x+$\frac{π}{4}$∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],即x∈[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z),
∴可得函数的递减区间为[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z).
点评 本题考查函数的单调性,考查三角函数的化简,正确化简函数是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±2x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-48,0) | C. | (-192,0) | D. | (-60,-48) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com