精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:AC⊥SB;
(2)求直线SB与平面ADS所成角的正弦值.
(1)证明:建立如图所示的坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),S(0,0,2),
AC
=(-2,2,0),
SB
=(2,2,-2),
AC
SB
=0,
∴AC⊥SB;
(2)取平面ADS的一个法向量
DC
=(0,2,0),则
cos
SB
DC
=
SB
DC
|
SB
||
DC
|
=
3
3

∴直线SB与平面ADS所成角的正弦值是
3
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

将图合成一个正方体后,直线PR与QR所成角的余弦是(  )
A.0B.
1
5
C.-
1
5
D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M为AB的中点.
(1)求证:BC1平面MA1C;
(2)求直线BC1与平面AA1B1B所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,直线AD1与平面BB1D1D所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,B1B的中点.
(1)求直线D1N与平面A1ABB1所成角的大小;
(2)求直线CM与D1N所成角的正弦值;
(3)(理科做)求点N到平面D1MB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,长方体ABCD-A1B1C1D1中,AB=
2
,BC=AA1=1,则BD1与平面A1B1C1D1所成的角的大小为______°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长都为a的正三棱柱ABC-A1B1C1中,P是A1B的中点.
(Ⅰ)求PC与平面ABB1A1所成的角;
(Ⅱ)求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S-ABC中,底面为边长为6的等边三角形,SA=SB=SC,三棱锥的高为
3
,则侧面与底面所成的二面角为(  )
A.45°B.30°C.60°D.65°

查看答案和解析>>

同步练习册答案